Quartz Surfacing

Quartz Surfacing

Quartz surfacing

Engineered stone quartz surfacing is made from approximately 95% natural quartz and 5% polymer resins (by weight). Testing has shown that they retain much of the toughness of quartz but display increased ductility due to the resin, improving impact resistance. Countertops are custom made and more scratch resistant as well as less porous than natural quartz surfaces, and don’t need to be sealed like other stone surfaces. Due to the presence of the resins, quartz counters are less prone to staining. Thicknesses may be 6mm, 1.2 cm (1/2 inch), 2 cm (3/4 inch), 3 cm (1¼ inch) or 4 cm (1½ inch). Brands include CMMA Solid Surface by World BMC, Hanstone, NaturaStone, Silestone, Q, Caesarstone, Technistone, Cambria, and Zodiaq.

Quartz Surfacing

Quartz is a mineral composed of silicon and oxygen atoms in a continuous framework of SiO4 silicon–oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical formula of SiO2. Quartz is the second most abundant mineral in Earth’s continental crust, behind feldspar.

Quartz crystals are chiral, and exist in two forms, the normal α-quartz and the high-temperature β-quartz. The transformation from α-quartz to beta-quartz takes place abruptly at 573 °C (846 K). Since the transformation is accompanied by a significant change in volume, it can easily induce fracturing of ceramics or rocks passing through this temperature limit.

There are many different varieties of quartz, several of which are semi-precious gemstones. Since antiquity, varieties of quartz have been the most commonly used minerals in the making of jewelry and hardstone carvings, especially in Eurasia.

Quartz Surfacing: Quartz belongs to the trigonal crystal system. The ideal crystal shape is a six-sided prism terminating with six-sided pyramids at each end. In nature quartz crystals are often twinned (with twin right-handed and left-handed quartz crystals), distorted, or so intergrown with adjacent crystals of quartz or other minerals as to only show part of this shape, or to lack obvious crystal faces altogether and appear massive. Well-formed crystals typically form in a ‘bed’ that has unconstrained growth into a void; usually the crystals are attached at the other end to a matrix and only one termination pyramid is present. However, doubly terminated crystals do occur where they develop freely without attachment, for instance within gypsum. A quartz geode is such a situation where the void is approximately spherical in shape, lined with a bed of crystals pointing inward.

α-quartz crystallizes in the trigonal crystal system, space group P3121 or P3221 depending on the chirality. β-quartz belongs to the hexagonal system, space group P6222 and P6422, respectively. These space groups are truly chiral (they each belong to the 11 enantiomorphous pairs). Both α-quartz and β-quartz are examples of chiral crystal structures composed of achiral building blocks (SiO4 tetrahedra in the present case). The transformation between α- and β-quartz only involves a comparatively minor rotation of the tetrahedra with respect to one another, without change in the way they are linked.

Quartz Surfacing

Recommended Read:

Ceramic Tile

To know more about Worlds Of Stone, visit here WOS

About Author: admin@worldofstones.com