Limestone is a sedimentary rock, composed mainly of skeletal fragments of marine organisms such as coral, forams and molluscs. Its major materials are the minerals calcite and aragonite, which are different crystal forms of calcium carbonate(CaCO3).

About 10% of sedimentary rocks are limestones. The solubility of limestone in water and weak acid solutions leads to karst landscapes, in which water erodes the limestones over thousands to millions of years. Most cave systems are through limestone bedrock.

Limestones has numerous uses: as a building material, an essential component of concrete (Portland cement), as aggregate for the base of roads, as white pigment or filler in products such as toothpaste or paints, as a chemical feedstock for the production of lime, as a soil conditioner, or as a popular decorative addition to rock gardens.

The first geologist to distinguish limestone from dolomite was Belsazar Hacquet in 1778.

Like most other sedimentary rocks, most limestones are composed of grains. Most grains in limestones are skeletal fragments of marine organisms such as coral or foraminifera. Other carbonate grains comprising limestones are ooids, peloids, intraclasts, and extraclasts. These organisms secrete shells made of aragonite or calcite, and leave these shells behind when they die.

Limestone often contains variable amounts of silica in the form of chert (chalcedony, flint, jasper, etc.) or siliceous skeletal fragment (sponge spicules, diatoms, radiolarians), and varying amounts of clay, silt and sand (terrestrial detritus) carried in by rivers.

Some limestones do not consist of grains at all, and are formed completely by the chemical precipitation of calcite or aragonite, i.e. travertine. Secondary calcite may be deposited by supersaturated meteoric waters (groundwater that precipitates the material in caves). This produces speleothems, such as stalagmites and stalactites. Another form taken by calcite is oolitic limestone, which can be recognized by its granular (oolite) appearance.

The primary source of the calcite in limestones is most commonly marine organisms. Some of these organisms can construct mounds of rock known as reefs, building upon past generations. Below about 3,000 meters, water pressure and temperature conditions cause the dissolution of calcite to increase nonlinearly, so limestone typically does not form in deeper waters (see lysocline). Limestones may also form in lacustrine and evaporite depositional environments.

Calcite can be dissolved or precipitated by groundwater, depending on several factors, including the water temperature, pH, and dissolved ion concentrations. Calcite exhibits an unusual characteristic called retrograde solubility, in which it becomes less soluble in water as the temperature increases.

Impurities (such as clay, sand, organic remains, iron oxide, and other materials) will cause limestones to exhibit different colors, especially with weathered surfaces.

Limestone may be crystalline, clastic, granular, or massive, depending on the method of formation. Crystals of calcite, quartz, dolomite or barite may line small cavities in the rock. When conditions are right for precipitation, calcite forms mineral coatings that cement the existing rock grains together, or it can fill fractures.

Travertine is a banded, compact variety of limestone formed along streams; particularly where there are waterfalls and around hot or cold springs. Calcium carbonate is deposited where evaporation of the water leaves a solution supersaturated with the chemical constituents of calcite. Tufa, a porous or cellular variety of travertine, is found near waterfalls. Coquina is a poorly consolidated limestone composed of pieces of coral or shells.

During regional metamorphism that occurs during the mountain building process (orogeny), limestones recrystallizes into marble.

Limestones is a parent material of Mollisol soil group.



The Megalithic Temples of Maltasuch as Ħaġar Qim are built entirely of limestones. They are among the oldest free-standing structures in existence.

Limestones are very common in architecture, especially in Europe and North America. Many landmarks across the world, including the Great Pyramid and its associated complex in Giza, Egypt, were made of limestone. So many buildings in Kingston, Ontario, Canada were, and continue to be, constructed from it that it is nicknamed the ‘Limestone City’. On the island of Malta, a variety of limestones called Globigerina limestones was, for a long time, the only building material available, and is still very frequently used on all types of buildings and sculptures. Limestones is readily available and relatively easy to cut into blocks or more elaborate carving. It is also long-lasting and stands up well to exposure. However, it is a very heavy material, making it impractical for tall buildings, and relatively expensive as a building material.

The Great Pyramid of Giza, one of the Seven Wonders of the Ancient World had an outside cover made entirely from limestone.
Riley County Courthouse built of limestone in Manhattan, Kansas, USA
A limestone plate with a negative map of Moosburg in Bavaria is prepared for a lithography print.

Limestones was most popular in the late 19th and early 20th centuries. Train stations, banks and other structures from that era are normally made of limestone. It is used as a facade on some skyscrapers, but only in thin plates for covering, rather than solid blocks. In the United States, Indiana, most notably the Bloomington area, has long been a source of high quality quarried limestone, called Indiana lime stone. Many famous buildings in London are built from Portland limestone.

Limestone was also a very popular building block in the Middle Ages in the areas where it occurred, since it is hard, durable, and commonly occurs in easily accessible surface exposures. Many medieval churches and castles in Europe are made of limestone. Beer stone was a popular kind of limestone for medieval buildings in southern England.

Limestones and (to a lesser extent) marble are reactive to acid solutions, making acid rain a significant problem to the preservation of artifacts made from this stone. Many limestone statues and building surfaces have suffered severe damage due to acid rain. Acid-based cleaning chemicals can also etch limestone, which should only be cleaned with a neutral or mild alkaline-based cleaner.

Other uses include:

  • It is the raw material for the manufacture of quicklime (calcium oxide), slaked lime (calcium hydroxide), cement and mortar.
  • Pulverized limestone is used as a soil conditioner to neutralize acidic soils (agricultural lime).
  • Is crushed for use as aggregate—the solid base for many roads as well as in asphalt concrete.
  • Geological formations of limestone are among the best petroleum reservoirs;
  • As a reagent in flue-gas desulfurization, it reacts with sulfur dioxide for air pollution control.
  • Glass making, in some circumstances, uses limestone.
  • It is added to toothpaste, paper, plastics, paint, tiles, and other materials as both white pigment and a cheap filler.
  • It can suppress methane explosions in underground coal mines.
  • Purified, it is added to bread and cereals as a source of calcium.
  • Calcium levels in livestock feed are supplemented with it, such as for poultry (when ground up).
  • It can be used for remineralizing and increasing the alkalinity of purified water to prevent pipe corrosion and to restore essential nutrient levels.
  • Used in blast furnaces, limestone binds with silica and other impurities to remove them from the iron.
  • It is often found in medicines and cosmetics.
  • It is used in sculptures because of its suitability for carving.

Recommended Read:

Ceramic Tile

To know more about Worlds Of Stone, visit HERE WOS

About Author: